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We use probabilistic methods to show that a large class of sequences (Lnl of
multivariate Bernstein-type operators satisfy the inequality L n (f, xl ~ L n + 1 (f, xl,
whenever f is a convex function. 1995 Academic Press, Inc.

Many sequences (L n ) of one-dimensional approximation operators
satisfy the property of monotonic convergence, i,e"

whenever f is a convex function. This fact is usually shown, for each
particular sequence, using methods which depend heavily on the special
form of the operators considered (see for instance [3, 6-8, 10, 11]), The
technique used by Khan in [7,8] provides some simple and elegant proofs.
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It is based on a martingale-type property and the conditional version of
Jensen's inequality. The aim of this note is to apply such a probabilistic
method to the multidimensional case. Moreover, we show that tensor
product operators inherit from their "factors" the property of monotonic
convergence in a sense to be detailed below.

To begin with, let I be a convex subset of R k and (L,,) be a sequence of
positive linear operators acting on C(I), the space of all real continuous
functions defined on I. Suppose that we have the representation

XEI, fEC(/), j=n,n+l,

where E denotes mathematical expectation and Z~, Z~+' are I-valued
random vectors satisfying the integrability condition

E liZ/II < 00, j= n, n + I,

11·11 being the usual norm in R k
, as well as the martingale-type property

a.s., XE I, (I)

where E( ·1· ) denotes conditional expectation [9]. Iff is a convex function
then we have, by the conditional version of Jensen's inequality [5],

L,,(f, x)=E(E(f(Z~)I Z~+l))

~Ef(E(Z~ I Z~+l))
= Ef(Z~+ ,)

= L,,+, (f, x).

In particular, (I) holds when Z7:=(llj)L.1~1 U~, where U~, ..., U~+, are
integrable, independent identically distributed random vectors with values
in I.

We give a few examples to illustrate the application of this method to
multivariate Bernstein-type operators. In order to avoid a cumbersome
notation we consider the two-dimensional case. The extension to higher
dimensions is straightforward.

EXAMPLES. (a) Bernstein polynomials on the triangle. Set 1:= {(x,y):
x ~ 0, y ~ 0, x + y ~ I } and let f be a real function on I. The nth Bernstein
polynomial of f is defined by

" " - k (k I) 11 !
(B"f)(x,y):= I If -, - kl II ( -k-l)!

k~O I~O 11 n .. n .
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It is clear that

NOTE

where U\x,y>, vi"Y>'", are independent random vectors having the same
trinomial distribution with parameters I, x, Y [4], i.e"

P(U~X,Y) = (k, I)) = l-x- y

=x

=y

if (k, l) = (0, 0)

if (k,l)=(I,O)

if (k, l) = (0, 1),

Therefore, if I is convex on I, we have

(BJ)(x, y) ~ (B,,+ d)(x, y),

For an analytic proof of this result see [2].

(b) Baskakov-type operators, Define for x ~ 0, y ~ 0, n = 1, 2, ",

'Fe' W (k I) (n+k+l-l)!
(B:I)(x,y):= L L I -,- kl II ( -1 )'

k~O I~O n n "n ,

where I is a real function on [0, CfJ) X [0, CfJ) such that

We can write

(Bt III )(x, y) < 00, j= n, n + 1.

(Btl)(x,Y)=EI(~ ±VjX,Y»),
J i~ 1

where V\X,y), vi"Y>'", are independent random vectors having the same
negative trinomial distribution with parameters 1, x, y [4], i.e.,

Therefore, if I is convex, we have

k,I=0,1,2,,, ..
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(c) Operators of Bleimann, Butzer, and Hahn-type. Set A := {(x, y):
x ~ 0, y ~ 0, xy ~ I} and define, for (x, y) E .1, n = 1,2, ... , and any real
function f on .1

" ,,-k (k I) n!
(L"fHx,y):= k~O I~of n-k+ l' n-I+ 1 k! I! (n-k-/)!

( X )k ( Y )1 ( 1 _ xy )" - k-I
X l+x I+y (1 +x)(l+y) .

This is a two-dimensional analogue, distinct from a tensor product, of the
operator introduced by Bleimann, Butzer, and Hahn [1]. We have the
representation

where

i=l i= I

and (V[, VI), (V2 , V2 ), ... are independent random vectors with the same
trinomial distribution with parameters 1, x/( 1 + x), y/( 1+ y). It is easy to
check that for k, 1= 0, I, ..., with k + 1~ n + 1

k+1
P(S,,=i, T,,=jl S"+l=k, T,,+I=/)=1---

1
,

n+
k

= n+ l'

n+ l'

From this we deduce

k
P(S,,=il S"+l=k, T,,+I=/)=--I'

n+

k
=1---,

n+1

and therefore

i=k, j=1

i=k-l, j=1

i= k, j= 1- 1.

i=k-l

i=k,

(
S" I ) k - 1 k k n - k + 1

E S"+l=k,T"+I=1 = k --+ k 1n - Sri + 1 n - + 2 n + 1 n - . + n + 1

k

n+l-k+I'
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if k ~ n, whereas
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Thus, we have

(
Sn I ) Sn+1

E n-Sn+ 1 Sn+l, Tn+1 = n+ l-S
n

+1+ 1- I(Sn+1 =n+ 1)

where I( . ) denotes the indicator function. Similarly

(
Tn I ) Tn+ I

E n-Tn+l Sn+l, Tn+1 =n+1_Tn+I+1-I(Tn+l=n+l)

and we conclude

E(Z" I Zn+ I) = Zn+ 1 - (/(S" + I =n + 1), I(Tn+1 =n + 1» a.s.,

where

a.s.,

a.s.,

(
S T)Z.= J J

J • j _ Sj + 1' j - Tj + 1 .

Finally, we can assert the following: Let f be a convex function on
[0, 00) x [0, CD) (the convex hull of A). If f is nonincreasing in each
variable, then

(Lnf)(x, y) ~ (Ln+ J)(x, y), (x,Y)EA.

(d) The examples above are summation operators. As an example of
an integral operator we can mention the k-dimensional Weierstrass
operator associated with a random vector of the form x + (lin) L;l~ I Wi'
where WI' W 2 , ... are independent k-dimensional random vectors having
the same multivariate normal distribution with a non-diagonal covariance
matrix (not depending on x). The details are omitted.

Finally we show that tensor product operators inherit from their factors
the property of monotonic convergence. In order to see this, the integral
notation will be more convenient.

Let I (resp. J) be a convex subset of R k (resp. R') and let (L~)

(resp. (L~,2») be a sequence of operators defined by

(resp.

YEJ),
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where J1':n (resp. v~) are probability measures on I (resp. J). If Lm.n is the
tensor product operator defined by

(Lm.nh)(x,y):= f hd(J1':n®v~),
IxJ

(x,y)EIxJ

(where, as usual, "(8)" denotes product measure), then the two following
statements are equivalent:

(i) (Lm,nh)(x,y)~(Lm+l.nh)(x,y), for any convex function h on
I x J such that (Li .n Ihl )(x, y) < oc, j = m, m + 1.

(ii) L~)(f, x) ~ L~~ 1 (f, x), for any convex functionf on I such that
LY)(lfl, x) < 00, j=m, m + 1.

Indeed, both implications follow from Fubini's theorem, taking into
account the following: If f is a convex function on I, then the function h
defined on Ix J by h(u, v):= f(u) is also convex. Conversely, if h is a con­
vex function on I x J, then h( " v) is a convex function on I, for any P E J.
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